To MZetko : Á, důkaz autoritou, pán je gurmán :-)
To leco :
"Pracujeme s diskrétními hodnotami.
Z toho důvodu není vyloučeno, že hutota
se může na určité hodnotě zastavit."
hustota je pocet cisel/pocet prvocisel.
No, ja nevim, ale ve skole nam rikaly ze pocet racionalnich cisel, tj a/b, je asi tak nekonecno, priblizne. Takze hustot je taky nekonecno, tak nema duvod se zastavovat, jenom proto ze by proste nemela kam klesnout.
No a jestli chces nejaky rychlodukaz, tak dobre. Konstrujme si prvocicla sitem.( Tj vsechny cisla jsou prvocisla dokud neni pro prosivani receno jinak). Predpokladejme ze nekde je hranice H, kde se hustota prvocisel zastavi. Nemusime jit pri prosivani cislama dal za H, protoze vsechny slozena cisla jsme uz odstranily, zadne k odstraneni uz neni. Nejaky hloupy blbec to nevi a zkusi si umocnit prvni prvocislo za touto hranici. Ale toto cislo (ani nasobky) jsme predtim neodstanily, tak klesne hustota. Nevadi, posuneme hranici k tomuto prvocislu,prosejeme a rekneme, ze jako ted uz je hustota dal a dal stejna, nic z "nasich prvocisel" uz neodstani a hustota neklesne. Je to blbec, nepouci se a udela to same. Zase se mu povede odstranit dalsi "nase prvocislo". Toto jde opakovat do zblbnuti, takze ta hranice proste neni.
No a protoze hustota neustale klesa, kvuli tomu aktivnumu blbovi, ktery nam nici nasi praci, tak velikost der musi stoupat>musi stoupat i velikost nejvetsi. Takze vzdycky staci pockat dost dlouho a dostaneme takovou jakou chcem.