t = s1/(v1 + k) + s2/(v2 + k) + s3/(v3 + k) ...
(v1+k) * (v2+k) ... = z
t = (s1 * z/(v1+k) + s2 * z/(v2+k) ... ) / z
t * z = s1 * z/(v1+k) + s2 * z/(v2+k) ...
Nejvyssi 'k' v 'z' budou k^n + k ^(n-1) + k ^(n-2) + k ^(n-3) (n je 1000), rekneme, ze necham jen k^1000
A pak tam budou v1 * v2 * v3... = vL
t * (vL + k^1000) = ...
z / (v1+k) se nebude prilis lisit od z / (v2+k)
Takze se da opet udelat prumer
vP = (suma(v) + suma(k)) / n = suma(v) / n + k
t * z = z/vP * (s1 + s2 ...)
t * vP = suma(s)
t * (suma(v) / n + k) = suma(s)
suma(s) / t - suma(v) / n = k ... To by mohl byt priblizny vysledek. Tipuji +-10%.
---
t = s1/(v1 + k) + s2/(v2 + k) + s3/(v3 + k)
s: 5, 4, 3
v: 3, 2, 1
t: 15
n: 3
k = suma(s) / t - suma(v) / n
k = 12 / 15 - 6 / 3 = 4/5 - 2 = -6/5 (zhruba -1, aby se mi lip pocitalo)
15 = 5/(3 - 1) + 4/(2 -1) + 3/(1 - 1)
15 = 5/2 + 4
A, mi to teda moc nevychazi :)