"Libovolné celé číslo lze jednoznačně rozložit na součin prvočísel" - "Prvočíslo je přirozené číslo, které je dělitelné pouze 2 různými čísly, a to 1 a samo sebou"
Nechápu, jak může být součin přirozených čísel 0 nebo záporné číslo??? Vysvětlit =)
Fórum › Offtopic
Faktorizace
To Zelenáč: Nemůže. Stačí tak?
V tom případě je některá ta definice chybná??
Proč by byla chybná?
Definicie su spravne... Ta druha je podana tak, ze sa to da aj zjednodusit, ale definitifne spravna ...
"Libovolné CELÉ číslo..."
Pokud se nemýlím, tak celá čísla jsou ..-3,-2,-1,0,1,2,3... Pokud je tato definice správná, tak lze jakékoli záporné číslo rozločit na součin prvočísel (2,3,5,7,11,13..), která jsou vždy kladná!
To samé nechápu u nuly a jedničky: aby byl součin 0, musí být alespoň jeden z činitelů také 0 -> nela ovšem není prvočíslo - i kdybych ji počítal do množiny přirozených čísel, není dělitelná sama sebou.. Jednička také není prvočíslo, i kdyby byla, tak nelze rozložit JEDNOZNAČNĚ - jakákoli mocnina jedničky je zase 1!
Takže buďto by definice měla být "Jakékoli přirozené číslo větší než 1 se dá jedoznačně rozložit na součin prvočísel" a nebo...???
OMG, proto se ptam, zda jsou ty definice spravne :'-(
Prvočíslo nemůže být záporné, protože definice zní :
Prvočíslo je takové číslo, který je dělitelné pouze jedničkou a samo sebou.
A za druhé prvočísla jsou definována v množině přirozených čísel, která obsahuje celá čísly, která jsou větší než nula (někdy se tam řadí i ta nula).
A číslo 1 se nedá rozložit, protože to není prvočíslo, ale ani číslo složené. (Složená čísla jsou ta, která nejsou prvočísla. V N)
Tvé věty platí pouze v oboru přirozených čísel.
Edit: resp. ty první věta neplatí vůbec, protože je v ní určen obor celých čísel.
Diky ;-) (http://cs.wikipedia.org/wiki/Faktorizace)
Přidej příspěvek
Ano, opravdu chci reagovat → zobrazí formulář pro přidání příspěvku
×Vložení zdrojáku
×Vložení obrázku
×Vložení videa
Uživatelé prohlížející si toto vlákno
Podobná vlákna
Faktorizace — založil pazdy
Moderátoři diskuze