Ze sešitu číslicové techniky<br> 0000 1001. díl – Minimalizace
 x   TIP: Přetáhni ikonu na hlavní panel pro připnutí webu
Reklama
Reklama

Ze sešitu číslicové techniky<br> 0000 1001. díl – MinimalizaceZe sešitu číslicové techniky<br> 0000 1001. díl – Minimalizace

 

Ze sešitu číslicové techniky<br> 0000 1001. díl – Minimalizace

Google       Google       27. 3. 2006       20 228×

V tomto díle se podíváme na minimalizaci, jistě jste si totiž všimli, že mnohé funkce jsou zbytečně složité a šly by zjednodušit. Tím se budeme zabývat právě při minimalizaci. Pro minimalizaci se používá Karnaughova mapa.

Reklama
Reklama

Minimalizace je značné zjednodušení funkce, které ušetří soustu materiálu a práce. Počet logických hradel po minimalizaci nezřídka klesne hrubě pod padesát procent.

Minimalizace pomocí Karnaughovy mapy spočívá v tom, že spojíme sousedící termy (políčka, jež obsahují log. 1, označena čárkou). Můžeme je spojovat do dvojic, čtveřic, osmic a šestnáctic. Spojeným termům říkáme mintermy. Více na příkladech:

Prvně se podíváme na takový nejjednodušší případ.


Na první rovnici vidíte původní rovnici, druhá je rovnice minimalizace. Už při takovéto jednoduché úloze je zjednodušení značné.

Totéž si nyní ukážeme na Karnaughově pro tři vstupní proměnné.


Zde je rozdíl ještě razantnější, jelikož, jak z Karnaughovy mapy vyplývá, všechny proměnné jsou závislé na proměnné x2 a ostatní vstupy nemají na výstupu žádný vliv.

Na dalším příkladu se to pokusím ještě jednou názorně vysvětlit a popsat a také vám na něm ukážu, jak se dají tvořit mintermy přes okraj Karnaughovy mapy (tato možnost je také velmi důležitá).

Zde se prvně podíváme na červenou oblast. Je celá v poli proměnné x1 a záleží tedy pouze na ní. Tak jak tomu bylo u předchozích dvou případů. Ale máme tu i druhý, modře vyznačený, minterm. Ten nejen že je spojen přes okraje Karnaughovy mapy, ale vyskytuje se v oblasti x2 non (negovaná) a v oblasti x3 non. Oblasti x2 a x3 jsou zcela mimo něj, proto jsou udávány jako negované. A v oblasti x1 je jen napůl, tudíž na něj tato oblast nemá vliv.

Ještě se podíváme na jeden příklad, kdy by mohla vyniknout možnost spojování přes okraj:


Zde vidíme přes okraj spojenou oblast x3 non. Dále se již následující K. mapy liší. V jedné je použita dvojice, která je v oblasti x2 a x3. Ve druhém případě je ale označena čtveřice v oblasti x2. Z toho vyplývá, že se snažíme dělat co největší mintermy a že se můžou překrývat a že se jich snažíme udělat co nejméně, ale přitom pokrýt celou mapu (nenechat ani políčko, v němž je čárka, volné). Rozdíl vidíme i na rovnicích, ta druhá je výrazně jednodušší.

Ještě se podíváme na pár příkladů se čtyřmi vstupními proměnnými, ať se pořádně dostaneme do obrazu, protože bez tohoto cesta dále nevede.

Na tomto obrázku bylo krásně ukázané spojení přes okraj Karnaughovy mapy. A také by z uvedeného příkladu mělo vyplynout, že práce s Karnaughovou mapou pro čtyři vstupní proměnné je stejná jako pro tři. Dám k dobru ještě další příklad, ať si to můžete pořádně prohlédnout:

No a na posledním příkladu si můžete prohlédnout, jak významné může být zjednodušení.

×Odeslání článku na tvůj Kindle

Zadej svůj Kindle e-mail a my ti pošleme článek na tvůj Kindle.
Musíš mít povolený příjem obsahu do svého Kindle z naší e-mailové adresy kindle@programujte.com.

E-mailová adresa (např. novak@kindle.com):

TIP: Pokud chceš dostávat naše články každé ráno do svého Kindle, koukni do sekce Články do Kindle.

Hlasování bylo ukončeno    
0 hlasů
Google
(fotka) Jiří ChytilAutor programuje ve VB, zajímá se o elektrotechniku, studuje na SOŠ Elektrotechnické - obor číslicová technika.
Web    

Nové články

Obrázek ke článku NEWTON Media prohledá 200  milionů mediálních zpráv během sekund díky Cisco UCS

NEWTON Media prohledá 200 milionů mediálních zpráv během sekund díky Cisco UCS

Česká společnost NEWTON Media provozuje největší archiv mediálních zpráv ve střední a východní Evropě. Mezi její zákazníky patří například ministerstva, evropské instituce nebo komerční firmy z nejrůznějších oborů. NEWTON Media rozesílá svým zákazníkům každý den monitoring médií podle nastavených klíčových slov a nabízí online službu, kde lze vyhledat mediální výstupy v plném znění od roku 1996.

Reklama
Reklama
Obrázek ke článku Delphi 10.1.2 (Berlin Update 2) – na co se můžeme těšit

Delphi 10.1.2 (Berlin Update 2) – na co se můžeme těšit

Touto roční dobou, kdy je zem pokrytá barevným listím a prsty křehnou v mrazivých ránech, se obvykle těšíme na zbrusu novou verzi RAD Studia. Letos si však ale budeme muset počkat na Godzillu a Linux až do jara. Vezměme tedy za vděk alespoň updatem 2 a jelikož dle vyjádření pánů z Embarcadero se budou nové věci objevovat průběžně, pojďme se na to tedy podívat.

Obrázek ke článku Konference: Moderní datová centra pro byznys dneška se koná už 24. 11.

Konference: Moderní datová centra pro byznys dneška se koná už 24. 11.

Stále rostoucí zájem o cloudové služby i maximální důraz na pružnost, spolehlivost a bezpečnost IT vedou k výrazným inovacím v datových centrech. V infrastruktuře datových center hraje stále významnější roli software a stále častěji se lze setkat s hybridními přístupy k jejich budování i provozu.

Obrázek ke článku Konference: Mobilní technologie mají velký potenciál pro byznys

Konference: Mobilní technologie mají velký potenciál pro byznys

Firmy by se podle analytiků společnosti Gartner měly  rychle přizpůsobit skutečnosti, že mobilní technologie už zdaleka nejsou horkou novinkou, ale standardní součástí byznysu. I přesto - nebo možná právě proto - tu nabízejí velký potenciál. Kde tedy jsou ty největší příležitosti? I tomu se bude věnovat již čtvrtý ročník úspěšné konference Mobilní řešení pro business.

loadingtransparent (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();
Hostujeme u Českého hostingu       ISSN 1801-1586       ⇡ Nahoru Webtea.cz logo © 20032016 Programujte.com
Zasadilo a pěstuje Webtea.cz, šéfredaktor Lukáš Churý