Umělá inteligence - 4
 x   TIP: Přetáhni ikonu na hlavní panel pro připnutí webu
Reklama

Umělá inteligence - 4Umělá inteligence - 4

 
Hledat
Moderní platforma pro vytvoření vašeho nového webu – Wix.com.
Nyní už můžete mít web zdarma.
Vybavení pro Laser Game
Spuštěn Filmový magazín
Laser Game Brno

Umělá inteligence - 4

Google       Google       13. 3. 2009       28 043×

Pokračování seriálu Umělá inteligence, v tomto díle o perceptronech a jejich učícím algoritmu.

Reklama
Reklama

Perceptron

Perceptron sestává z jediného výkonného prvku modelovaného obvykle McCullochovým a Pittsovým modelem neuronu, který má nastavitelné váhové koeficienty a nastavitelný práh. Někteří autoři označují stejným názvem i celou síť takových prvků. Algoritmus vhodný k nastavení parametrů perceptronu publikoval poprvé F. Rosenblatt v roce 1958 a později v roce 1962. Rosenblatt dokázal následující větu:

Máme-li v n-rozměrném prostoru lineárně separabilní třídy objektů, pak lze v konečném počtu kroků učení (iterací optimalizačního algoritmu) nalézt vektor vah W perceptronu, který oddělí jednotlivé třídy bez ohledu na počáteční hodnotu těchto vah.

Preceptron s jedním výkonným prvkem umožňuje ovšem nanejvýše klasifikaci do dvou tříd. Zvětšíme-li však počet výkonných prvků pracujících v perceptronu a zvětšíme-li i počet jeho vrstev, je možno jím klasifikovat do více tříd. Tyto třídy již nemusí být lineárně separabilní, musí však být separabilní.

Perceptronová síť vychází z fyziologického vzoru a je taktéž třívrstvá.

Topologie a funkce

Vstupní vrstva v tomto případě funguje jako vrstva tzv. "vyrovnávací" či jinak řečeno rozvětvovací. Úkolem této vrstvy je rozdělit vstupní vektor, většinou dvourozměrný do jednorozměrného. Součástí perceptronu jsou taktéž váhy, jako u ostatních dále zmíněných sítí, a jeho váhy jsou pevně připojené a jsou tedy konstantní. Druhou vrstvu tvoří tzv. detektory příznaků. Každý z neuronů je náhodně spojen s prvky vstupní vrstvy. A nakonec poslední, třetí vrstva je nejdůležitější na celé perceptronové síti. Obsahuje "rozpoznávače" vzorů (pattern recognizer, neboli perceptrons). Změnou oproti dvěma zmíněným vrstvám je to, že její váhy nejsou nastaveny pevně, ale při procesu trénování či učení jsou nastavovány.

K jejich učení navrhl F. Rosenblatt tzv. perceptronovský učicí algoritmus. Přenosová funkce je skoková. Jelikož je funkce v podstatě transformací vstupního obrazu na výstup, je definována následujícím způsobem: nechť {x1, ... , Xn} Rn což je skutečná reálná množina proměnných z Rn. Dále máme stanovenu množinu funkcí definovaných na členech zmíněné množiny Rn. Pokud nalezneme množinu takových koeficientů, že platí rovnice 2.8, pak je tato rovnice skoková.

Tato funkce, jak lze vidět v rovnici 2.8., je realizována neuronem od McCullocha-Pittse s M vstupy a vhodně zvolenými vahami. Neurony ve vrstvě, která je schopná se naučit, mají zpravidla ještě jeden výstup navíc, jehož hodnota je konstantně nastavena na -1. Když si vzpomeneme na definici neuronové sítě, pak zjistíme, že při N vstupech má vlastní vstupní vektor perceptronu tvar rov. 2.9:

Jakmile se příslušné prahy položí rovny 0, provedeme úpravu perceptronu, která se používá při demonstracích učení perceptronu. Jelikož výstupní neuron perceptronu může nabývat pouze dvou hodnot, lze vstupní vektory-vzory přiřadit pouze do dvou tříd. Úprava bývá ve většině literatur označována jako "nastavený rozšířený vektor" a spočívá v tom, že vektory dané třídy bývají násobeny hodnotou -1.

Jelikož potřebujeme kvůli učení nastavovat nové váhy a prahy, existují pro perceptron následující metody učení:

  1. Metoda koeficientů - koeficient může být používán jako fixní či modifikovatelný. V případě modifikovatelnosti tohoto koeficientu pak mluvíme o tzv. absolutní či o zlomkové korekci.
  2. Gradientní metoda

Gradientní metoda

Gradientní metoda je metoda, která se používá pro nastavování vah v neuronové síti perceptronů. Využívá metodu největšího gradientu. Nastavování vah se potom děje pomocí následující rovnice:

kde c je konstanta zvaná gradient MSE chyby označovaná E.
Výpočet vlastní (energetické) funkce je pak definován výrazem:

kde gradient této funkce je dán vztahem:

V posledním uváděném vztahu má význam Fn skokové funkce. Jestliže proto dosadíme rov. 2.12 do rov. 2.10, dostaneme výchozí rovnici pro výpočet a nastavování nových vah. Tato rovnice je tvaru:

Podle této rovnice již můžeme velmi přesně nastavit váhy celé perceptronové sítě. Jednotlivé elementy při procesu učení se liší podle vrstvev umístěných v neuronové síti.

Jaký je rozdíl mezi jednotlivými elementy můžeme vypozorovat na obr. 2.11.

Obrázek 2.11: Typy neuronů v Rosenblattově neuronové síti

Fixní přírůstky

Při používání tohoto pravidla přepočtu nových vah se nové váhy modifikují podle násle­dujících vztahů:

Koeficient c může nabývat hodnot celočíselných větších než 0.

Absolutní korekce

Podmínkou této korekce je následující výraz:

a konstanta c pak musí odpovídat výrazu:

Zlomková korekce

V případě, že pro aktualizaci vah chceme používat tyto korekce, pak bychom měli postu­povat podle výrazu definovaného na následujícím řádku.

a z toho plyne výraz pro hodnotu c následující:

V tomto případě platí, že konvergencí algoritmu má být parametr lambda v intervalu 0 až 2.

Elementy v perceptronové vrstvě mají pouze jeden vstup (práh) připojený pevně ke konstantě 1. Ostatní vstupy jsou náhodně připojeny k výstupům démonů střední vrstvy a jejich váhy jsou nastavitelné. Jak vypadá přenosová charakteristika takového neuronu? Je následující: výstup je nulový za předpokladu, je-li vážený součet všech jeho vstupů nulový nebo záporný. V opačném případě je výstup roven jedné.

Učicí algoritmus perceptronu

  • Váhy jsou nastaveny náhodně.
  • Je-li výstup správný, váhy se nemění.
  • Má-li být výstup roven 1, ale je 0, inkrementuj váhy na aktivních vstupech.
  • Má-li být výstup roven 0, ale je 1, dekrementuj váhy na aktivních vstupech.

Aktivní vstupy máme přitom tehdy, je-li jejich hodnota na vstupech nad prahem nenulová. Velikost, s jakou se mění váhy (přesněji řečeno, kdy se inkrementují a kdy dekrementují), závisí na konkrétně zvolené variantě:

  • Při inkrementaci i dekrementaci se aplikují pevné přírůstky.
  • Přírůstky se mění v závislosti na velikosti chyby. Je výhodné, jsou-li při větši chybě větší a naopak. Takto zrychlená konvergence však může mít za následek nestabilitu učenÍ.
  • Proměnné a konstanty se kombinují v závislosti na velikosti chyby.

Příště si popíšeme vlastní neuronovou síť zpětného šíření Back-propagation.

Zdroj: Neuronové sítě, expertní systémy a rozpoznávání řeči, Ing. Václav Jirsík, CSc. a Ing. Petr Hráček

×Odeslání článku na tvůj Kindle

Zadej svůj Kindle e-mail a my ti pošleme článek na tvůj Kindle.
Musíš mít povolený příjem obsahu do svého Kindle z naší e-mailové adresy kindle@programujte.com.

E-mailová adresa (např. novak@kindle.com):

TIP: Pokud chceš dostávat naše články každé ráno do svého Kindle, koukni do sekce Články do Kindle.

Hlasování bylo ukončeno    
0 hlasů
Google
(fotka) Lukáš ChurýLukáš je šéfredaktorem Programujte, vyvíjí webové aplikace, fascinuje ho umělá inteligence a je lektorem na FI MUNI, kde učí navrhovat studenty GUI. Poslední dobou se snaží posunout Laser Game o stupeň výše a vyvíjí pro něj nové herní aplikace a elektroniku.
Web     Twitter     Facebook     LinkedIn    

Nové články

Obrázek ke článku Češi sledují internetovou televizi i na dovolené. Na Kuki se dívalo nejvíce diváků na Slovensku

Češi sledují internetovou televizi i na dovolené. Na Kuki se dívalo nejvíce diváků na Slovensku

V dubnu letošního roku skončilo omezení sledování internetového vysílání rozhlasových a televizních stanic za hranicemi České republiky. Sledovat IPTV platformy lze nejenom na dovolené, ale i služební cestě a to kdekoliv v rámci Evropské unie. Uživatelé televize Kuki tuto novinku během léta hojně využívali. Dovolenou si užili i se svými oblíbenými pořady a filmy. 

Reklama
Reklama
Obrázek ke článku Využijte plně potenciál mobilních technologií pro svou firmu

Využijte plně potenciál mobilních technologií pro svou firmu

Analytici společnosti IDC upozorňují, že v době nástupu nových mobilních technologií, jež podporují třeba umělou inteligenci, rozšířenou realitu nebo 5G sítě, bude pro úspěch firem ještě zásadnější zvolit ta správná řešení.  Kudy tedy vede cesta k efektivnímu využití mobilních technologií ve firmách? Na to se zaměří již šestý ročník úspěšné konference Mobilní řešení pro business, která se koná 20.9.2018 v pražském Kongresovém centru Vavruška na Karlově náměstí.

Obrázek ke článku Elektronická faktura není totéž, co faktura v e-mailu. Firmy e-fakturaci zatím příliš nevyužívají

Elektronická faktura není totéž, co faktura v e-mailu. Firmy e-fakturaci zatím příliš nevyužívají

Daňový doklad může mít listinnou nebo elektronickou podobu. Díky moderním účetním systémům je tak možné faktury posílat i přijímat s využitím elektronické výměny dat. Tuto vymoženost ale využívají pouhé jednotky procent firem. Mnohem větší nárůst obliby má paradoxně obdobný systém u živnostníků a malých firem, kteří si mohou doklad automaticky naimportovat do své fakturační aplikace ze zaslaného odkazu.

Reklama autora

Hostujeme u Českého hostingu       ISSN 1801-1586       ⇡ Nahoru Webtea.cz logo © 20032018 Programujte.com
Zasadilo a pěstuje Webtea.cz, šéfredaktor Lukáš Churý