Vývoj USB ovládača – 5. časť
 x   TIP: Přetáhni ikonu na hlavní panel pro připnutí webu
Reklama

Vývoj USB ovládača – 5. časťVývoj USB ovládača – 5. časť

 

Vývoj USB ovládača – 5. časť

Google       Google       18. 11. 2013       15 621×

V tejto časti si vytvoríme GUI klientsku aplikáciu v jazyku C#, ktorej základom bude rozhranie na komunikáciu medzi ovládačom zariadenia a .Net aplikáciou vytvorené s pomocou PInvoke (Platform Invoke).

Reklama
Reklama

Úvod

V tomto kroku máme funkčné USB zariadenie a ovládač s ním komunikujúci pomocou libusb. Ďalším krokom je vytvorenie koncovej aplikácie, pomocou ktorej môže používateľ hardvér ovládať. Pre zmenu som si vybral platformu .NET a jazyk C#, vďaka ktorým bude jednoduchšie demonštrovať princípy.

Aplikácia bude tvorená jedným oknom, v ktorom sa bude zobrazovať stav tlačidiel na zariadení, teplota procesora a napätie na potenciometri. Taktiež bude obsahovať prvky na ovládanie LED diód, na vypísanie textu a odoslanie bitmapy na LCD. Pri vytvorení okna sa aplikácia pokúsi otvoriť spojenie s USB zariadením; pokiaľ zariadenie nebude pripojené, skončí s chybovým hlásením.

Celú komunikáciu so zariadením vložíme do jedného objektu, ktorý bude pomocou P/Invoke (Platform Invoke) komunikovať s natívnou knižnicou ovládača vytvorenou v minulom dieli tohto seriálu. Tento objekt alebo wrapper sa bude taktiež starať o spracovanie vzniknutých chýb a namiesto číselných hodnôt vrátených ovládačom vyhodí príslušnú výnimku.

P/Invoke – Platform Invoke

Pokiaľ v .NET programujete už nejaký ten čas, je dosť možné, že ste sa stretli s potrebou importovať funkcie natívnych knižníc. V C/C++ by ste toho dosiahli jednoducho prilinkovaním knižnice k vášmu programu alebo by ste knižnicu načítali pomocou funkcie LoadLibrary, získali adresu funkcie volaním GetProcAddress a pretypovaním by vám vznikol odkaz na funkciu, ktorú by ste zavolali ako každú inú. V .Net to ale funguje trochu inak, na volanie funkcií v natívnych knižniciach musíme využiť DllImport (System.Runtime.InteropServices v knižnici System.Core).

V prvom kroku si v zdrojovom súbore zadeklarujeme použitie názvoslovia:

using System.Runtime.InteropServices;

Potom nám stačí v triede deklarovať statickú metódu nasledovným spôsobom:

/// <summary>
/// Vyčistí obrazovku jednou farbou
/// </summary>
/// <param name="color">Farba</param>
/// <returns></returns>
[DllImport("DeviceWrapper.dll",
 CallingConvention = CallingConvention.Cdecl)]
private static extern uint ClearScreen(uint color);

Čím prekladač vie, že metóda ClearScreen je externá a nachádza sa v knižnici DeviceWrapper.dll (to je náš ovládač). Každá takto vložená funkcia musí byť označená ako static extern s atribútom DllImport.

Naša klientska aplikácia bude importovať všetky funkcie exportované v ovládači DeviceWrapper, nebudú sa ale používať priamo. Napr. funkcia ClearScreen preberá jeden argument, ktorým je 24bitové číslo reprezentujúce farbu. Návratová hodnota je taktiež číslo (0 v prípade, že funkcia uspeje alebo iná hodnota popisujúca chybu). My ale túto metódu zabalíme v objekte (wrapper) tak, aby parameter farby nebol číslo, ale typ System.Color, a odstránime návratový typ, zmeníme ju na void. V prípade, že volanie funkcie ClearScreen z knižnice DeviceWrapper.dll zlyhá, nevrátime volajúcemu kód chyby, ale vyhodíme výnimku. Je to omnoho prijateľnejší spôsob. Týmto spôsobom dosiahneme to, aby bola metóda ClearScreen volaná vždy v správnom kontexte.

/// <summary>
/// Vyčistí obrazovku
/// </summary>
/// <param name="color">Farba</param>
public void ClearScreen(Color color)
{
    // Spojenie so zariadením musí byť otvorené
    if (!isOpen)
        throw new DeviceFailException(
            DeviceFailException.DeviceError.NotOpen);

    // Zavolať funkciu ClearScreen z DeviceWrapper.dll
    uint result = ClearScreen((uint)color.ToArgb());

    // Pokiaľ volanie zlyhalo, vyhodíme výnimku s kódom chyby
    if (result != 0)
        throw new DeviceFailException(
            (DeviceFailException.DeviceError)result);
}

Rozhranie na komunikáciu s ovládačom

Základ aplikácie bude tvorený jedným objektom – rozhraním na komunikáciu s ovládačom. Pri štarte aplikácie sa vytvorí inštancia tohto objektu, otvorí sa spojenie s USB zariadením a ďalšia komunikácia s ním už bude prebiehať iba pomocou tohto objektu. Pri ukončení aplikácie sa objekt odstráni, tým sa zatvorí spojenie s ovládačom a zariadením. Na obrázku je znázornené, aké metódy bude objekt obsahovať a ďalšie pomocné štruktúry, triedy a dátové typy.

Je dôležité uvedomiť si, že dátové štruktúry (pakety) sú rovnaké pre zariadenie, ovládač aj koncovú aplikáciu. Preto pri vývoji ovládača pracujeme s rovnakými dátovými typmi v zariadení aj na strane hosta. Táto klientska aplikácia definuje štyri takéto štruktúry, a to usbapp_bulk_out_t, usbapp_control_in_t, usbapp_control_out_t a usbapp_interrupt_in_t.

Ďalej potrebujeme definovať výnimky, ktoré objekt vyhodí pri chybnej komunikácii alebo pri nesprávnom použití rozhrania. Na to nám budú slúžiť dve triedy, DeviceFailException, ktorá bude vyhodená, ak dôjde k chybe v ovládači alebo zariadení, a DeviceNotOpenException, ktorú rozhranie vyhodí, ak sa programu nepodarí nadviazať spojenie so zariadením.

Nakoniec zadefinujeme štruktúry a enumy, ktoré poskytnú informácie z paketov cieľovému používateľovi rozhrania. Ako príklad uvediem nastavenie LED a LCD.

Aplikácia potrebuje odoslať zariadeniu príkaz, aby rozsvietilo modrú a zelenú LED diódu, zaplo LCD displej a taktiež aby posunulo obsah LCD displeja o 50 px. Keďže každé nastavenie v pakete je číselné, užívateľ nášho rozhrania by musel poznať, aké čísla pripadajú na modrú a zelenú LED. Taktiež by musel vedieť, akým príznakom zapne LCD displej. Preto je dôležité, aby naše rozhranie tieto čísla skrylo za enum dátové typy ako napr. zoznam LED diód a ich číselné hodnoty:

/// <summary>
/// Nastavenia LED diód
/// </summary>
public enum Led
{
    None = 0,
    Blue = 0x1,
    Green = 0x2,
    Amber = 0x4
};

Potom môže užívateľ jednoduchým spôsobom zostaviť nastavenia a odoslať ich zariadeniu:

// Vytvoriť nastavenie LED a LCD
Device.LedLcdOptions ledLcd = new Device.LedLcdOptions(
    Device.Led.Blue | Device.Led.Green, // Modrá a zelená LED
    0, // Oranžová nebude svietiť
    Device.DisplayOption.DisplayOn, // Zapnúť LCD displej
    0, // Displej nebude podsvietený
    50); // Obsah displeja bude posunutý o 50 px
 
// Odoslať nastavenie zariadeniu
device.SetupLedLcd(ledLcd);

Metóda Device.SetupLedLcd(LedLcdOptions options) skontroluje, či je spojenie na zariadenie otvorené a ak áno, zostaví paket usbapp_control_out_t z nastavení, ktoré užívateľ predal ako argument options. Zároveň skontroluje platnosť nastavení a to, či hodnota PWM a hodnota podsvietenia LCD displeja neprekročia max. hodnoty stanovené USB zariadením. Následne paket posunie ovládaču volaním funkcie SetupDevice z knižnice ovládača DeviceWrapper.dll.
Tá vytvorí USB paket, jeho dáta naplní obsahom štruktúry usbapp_control_out_t a odošle ho zariadeniu, ktoré paket prijme a spracuje. Akonáhle host potvrdí príjem paketu zariadením, funkcia SetupDevice vráti hodnotu určujúcu, či prenos prebehol v poriadku alebo sa vyskytla chyba.

Naše rozhranie túto vrátenú hodnotu porovná a pokiaľ zistí, že počas prenosu nastala chyba, vyhodí výnimku.

/// <summary>
/// Nastavi LED a LCD
/// </summary>
/// <param name="options">LED a LCD nastavenia</param>
public void SetupLedLcd(LedLcdOptions options)
{
    if (!isOpen)
        throw new DeviceFailException(
            DeviceFailException.DeviceError.NotOpen);
 
    // Vytvoriť paket obsahujúci nastavenia LED a LCD
    usbapp_control_out_t data = new usbapp_control_out_t();
    data.leds = options.Leds;
    data.pwmLedDuty = options.PwmLedDuty > MaxPwm ?
        MaxPwm : options.PwmLedDuty;
    data.display = options.LcdOptions;
    data.backlight = options.Backlight > MaxBacklight ?
        MaxBacklight : options.Backlight;
    data.displayScroll = options.LcdScroll;

    // Posunúť paket ovládaču, ktorý ho odošle
    uint result = SetupDevice(ref data);

    // Vyhodiť výnimku ak počas prenosu vznikla chyba
    if (result != 0)
        throw new DeviceFailException(
            (DeviceFailException.DeviceError)result);
}

Obdobným spôsobom trieda Device poskytuje prístup k ostatným funkciám ovládača. V princípe je potrebné iba „zabaliť“ volania ovládača takým spôsobom, aby klientska aplikácia na platforme .NET mohla využívať tieto metódy v súlade s konvenciami .NET a taktiež aby bolo možné spracúvať výnimky namiesto chybových kódov.

Front end – používateľské rozhranie

Na otestovanie funkčnosti poslúži jednoduchá GUI aplikácia, ktorá pri svojom štarte skontroluje, či je k počítaču pripojené naše zariadenia a ak áno, vytvorí klientske rozhranie pre komunikáciu s týmto zariadením. Používateľ tak bude mať možnosť jednoducho odosielať príkazy zariadeniu pomocou nami vytvoreného rozhrania.

Komunikácia bude pozostávať z troch častí:

  1. Príkazy odosielané klientom do zariadenia – nastavenie LED a vykresľovanie na LCD
  2. Pravidelná aktualizácia hodnôt z ADC prevodníka
  3. Vlákno bežiace na pozadí aplikácie čakajúce na prerušenia zo strany zariadenia

Keďže väčšinu práce bude mať na starosti rozhranie v triede Device, GUI aplikácii zostáva konvertovať vstupné hodnoty od používateľa a zobrazovať výstup zo zariadenia a čo je podstatnejšie, spracovanie chýb. V našom prípade pri vzniku chyby program zobrazí bližšie informácie o príčine vzniku chyby a následne sa ukončí.

Záver

A na záver si môžete stiahnuť zdrojový kód aplikácie a pozrieť ukážku toho, ako zariadenie a klientska aplikácia fungujú v praxi:

×Odeslání článku na tvůj Kindle

Zadej svůj Kindle e-mail a my ti pošleme článek na tvůj Kindle.
Musíš mít povolený příjem obsahu do svého Kindle z naší e-mailové adresy kindle@programujte.com.

E-mailová adresa (např. novak@kindle.com):

TIP: Pokud chceš dostávat naše články každé ráno do svého Kindle, koukni do sekce Články do Kindle.

2 názory  —  2 nové  
Hlasování bylo ukončeno    
3 hlasy
Google
Autor sa venuje programovaniu v jazykoch C#, C/C++, Delphi a v poslednej dobe sa taktiež zaujíma o vývoj hardvéru.
Web    

Nové články

Obrázek ke článku Malware KONNI se úspěšně skrýval 3 roky. Odhalil ho bezpečnostní tým Cisco Talos

Malware KONNI se úspěšně skrýval 3 roky. Odhalil ho bezpečnostní tým Cisco Talos

Bezpečnostní tým Cisco Talos odhalil celkem 4 kampaně dosud neobjeveného malwaru, který dostal jméno KONNI. Ten se dokázal úspěšně maskovat od roku 2014. Zpočátku se malware zaměřoval pouze na krádeže citlivých dat. Za 3 roky se ale několikrát vyvinul, přičemž jeho současná verze umožňuje útočníkovi z infikovaného počítače nejenom krást data, ale i mapovat stisky na klávesnici, pořizovat screenshoty obrazovky či v zařízení spustit libovolný kód. Pro odvedení pozornosti oběti zasílali útočníci v příloze také obrázek, zprávu a výhružkách severokorejského režimu či kontakty na členy mezinárodních organizací.

Reklama
Reklama
Obrázek ke článku Pouze jedna z deseti lokálních firem ví o pokutách plynoucích z GDPR

Pouze jedna z deseti lokálních firem ví o pokutách plynoucích z GDPR

Trend Micro, celosvětový lídr v oblasti bezpečnostních řešení a VMware, přední světový dodavatel cloudové infrastruktury a řešení pro podnikovou mobilitu, oznámily výsledky výzkumu mezi českými a slovenskými manažery zodpovědnými za ochranu osobních údajů, který zjišťoval, jak jsou připraveni na nové nařízení o ochraně osobních údajů (GDPR). Většina firem v České republice a na Slovensku nad 100 zaměstnanců je již s novým nařízením GDPR obeznámena. Výzkum provedený ve spolupráci s agenturou Ipsos ukázal, že téměř 8 firem z 10 o nařízení ví, přičemž jeho znalost je o něco vyšší na Slovensku (89 %) než v České republice (69 %).

Obrázek ke článku Vyděračský software Locky se vrací, tváří se jako potvrzení platby, odhalil tým Cisco Talos

Vyděračský software Locky se vrací, tváří se jako potvrzení platby, odhalil tým Cisco Talos

Jeden z nejznámějších ransomwarů, Locky, se vrací. Po většinu roku 2016 patřil mezi nejrozšířenější vyděračské softwary. Ke svému šíření využíval emailové kampaně s infikovanými přílohami. Ransomware Locky byl rozesílán prostřednictvím botnetu (internetový robot zasílající spamy) Necurs. Jeho aktivita na konci roku 2016 téměř upadla a spolu s ní i šíření ransomwaru Locky. Před několika týdny se Necurs opět probudil a začal posílat spamy nabízející výhodný nákup akcií. Dne 21. dubna zaznamenal bezpečnostní tým Cisco Talos první velkou kampaň ransomwaru Locky prostřednictvím botnetu Necurs za posledních několik měsíců.

Obrázek ke článku Dovozci baterií mění logistiku, letadlo nahrazuje námořní doprava

Dovozci baterií mění logistiku, letadlo nahrazuje námořní doprava

Dovozci baterií do mobilů či notebooků upouštějí od letecké přepravy zboží. V letošním roce plánují dovézt až 80 % produktů lodí. Přitom před 5 lety byla většina baterií do mobilních přístrojů dovezených do České republiky přepravována letadlem. Za proměnou způsobu transportu akumulátorů stojí zpřísnění pravidel pro leteckou přepravu, která přinášejí vyšší náklady i náročnou agendu.

loadingtransparent (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();
Hostujeme u Českého hostingu       ISSN 1801-1586       ⇡ Nahoru Webtea.cz logo © 20032017 Programujte.com
Zasadilo a pěstuje Webtea.cz, šéfredaktor Lukáš Churý